- (2) The pipe either is located where damage by external forces is unlikely or is otherwise protected against such damage. - (3) The pipe adequately resists exposure to ultraviolet light and high and low temperatures. - (h) Plastic pipe may be installed on bridges provided that it is: - (1) Installed with protection from mechanical damage, such as installation in a metallic casing; - (2) Protected from ultraviolet radiation; and - (3) Not allowed to exceed the pipe temperature limits specified in § 192.123. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–78, 61 FR 28784, June 6, 1996; Amdt. 192–85, 63 FR 37503, July 13, 1998; Amdt. 192–93, 68 FR 53900, Sept. 15, 2003; Amdt. 192–94, 69 FR 32895, June 14, 20041 #### §192.323 Casing. Each casing used on a transmission line or main under a railroad or highway must comply with the following: - (a) The casing must be designed to withstand the superimposed loads. - (b) If there is a possibility of water entering the casing, the ends must be sealed. - (c) If the ends of an unvented casing are sealed and the sealing is strong enough to retain the maximum allowable operating pressure of the pipe, the casing must be designed to hold this pressure at a stress level of not more than 72 percent of SMYS. - (d) If vents are installed on a casing, the vents must be protected from the weather to prevent water from entering the casing. ## § 192.325 Underground clearance. - (a) Each transmission line must be installed with at least 12 inches (305 millimeters) of clearance from any other underground structure not associated with the transmission line. If this clearance cannot be attained, the transmission line must be protected from damage that might result from the proximity of the other structure. - (b) Each main must be installed with enough clearance from any other underground structure to allow proper maintenance and to protect against damage that might result from proximity to other structures. - (c) In addition to meeting the requirements of paragraph (a) or (b) of this section, each plastic transmission line or main must be installed with sufficient clearance, or must be insulated, from any source of heat so as to prevent the heat from impairing the serviceability of the pipe. - (d) Each pipe-type or bottle-type holder must be installed with a minimum clearance from any other holder as prescribed in §192.175(b). [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–85, 63 FR 37503, July 13, 1998] #### §192.327 Cover. (a) Except as provided in paragraphs (c), (e), (f), and (g) of this section, each buried transmission line must be installed with a minimum cover as follows: | Location | Normal soil | Consoli-<br>dated rock | |------------------------------------------------------------------------------------------------------|----------------------|------------------------| | Inches (Millimeters). Class 1 locations Class 2, 3, and 4 locations Drainage ditches of public roads | 30 (762)<br>36 (914) | 18 (457)<br>24 (610) | | and railroad crossings | 36 (914) | 24 (610) | - (b) Except as provided in paragraphs (c) and (d) of this section, each buried main must be installed with at least 24 inches (610 millimeters) of cover. - (c) Where an underground structure prevents the installation of a transmission line or main with the minimum cover, the transmission line or main may be installed with less cover if it is provided with additional protection to withstand anticipated external loads. - (d) A main may be installed with less than 24 inches (610 millimeters) of cover if the law of the State or municipality: - (1) Establishes a minimum cover of less than 24 inches (610 millimeters); - (2) Requires that mains be installed in a common trench with other utility lines; and - (3) Provides adequately for prevention of damage to the pipe by external forces - (e) Except as provided in paragraph (c) of this section, all pipe installed in a navigable river, stream, or harbor must be installed with a minimum ### § 192.328 cover of 48 inches (1,219 millimeters) in soil or 24 inches (610 millimeters) in consolidated rock between the top of the pipe and the underwater natural bottom (as determined by recognized and generally accepted practices). - (f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under water not more than 200 feet (60 meters) deep, as measured from the mean low tide, must be installed as follows: - (1) Except as provided in paragraph (c) of this section, pipe under water less than 12 feet (3.66 meters) deep, must be installed with a minimum cover of 36 inches (914 millimeters) in soil or 18 inches (457 millimeters) in consolidated rock between the top of the pipe and the natural bottom. - (2) Pipe under water at least 12 feet (3.66 meters) deep must be installed so that the top of the pipe is below the natural bottom, unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means. (g) All pipelines installed under water in the Gulf of Mexico and its inlets, as defined in §192.3, must be installed in accordance with §192.612(b)(3). [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–27, 41 FR 34606, Aug. 16, 1976; Amdt. 192–78, 61 FR 28785, June 6, 1996; Amdt. 192–85, 63 FR 37503, July 13, 1998; Amdt. 192–98, 69 FR 48406, Aug. 10, 2004] # § 192.328 Additional construction requirements for steel pipe using alternative maximum allowable operating pressure. For a new or existing pipeline segment to be eligible for operation at the alternative maximum allowable operating pressure calculated under §192.620, a segment must meet the following additional construction requirements. Records must be maintained, for the useful life of the pipeline, demonstrating compliance with these requirements: | To address this construction issue: | The pipeline segment must meet this additional construction requirement: | |-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | (a) Quality assurance | (1) The construction of the pipeline segment must be done under a quality assurance plan addressing pipe inspection, hauling and stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field applied coating, lowering of the pipeline into the ditch, padding and backfilling, and hydrostatic testing. (2) The quality assurance plan for applying and testing field applied coating to girth welds must be: | | | <ul> <li>(i) Equivalent to that required under § 192.112(f)(3) for pipe; and</li> <li>(ii) Performed by an individual with the knowledge, skills, and ability to assure effective coating application.</li> </ul> | | (b) Girth welds | (1) All girth welds on a new pipeline segment must be non-destructively examined in accordance with \$192,243(b) and (c). | | (c) Depth of cover | <ol> <li>Notwithstanding any lesser depth of cover otherwise allowed in § 192.327, there must be at least 36 inches (914 millimeters) of cover or equivalent means to protect the pipeline from outside force damage.</li> <li>In areas where deep tilling or other activities could threaten the pipeline, the top of the pipeline must be installed at least one foot below the deepest expected penetration of the soil.</li> </ol> | | (d) Initial strength testing | (1) The pipeline segment must not have experienced failures indicative of systemic material defects during strength testing, including initial hydrostatic testing. A root cause analysis, including metallurgical examination of the failed pipe, must be performed for any failure experienced to verify that it is not indicative of a systemic concern. The results of this root cause analysis must be reported to each PHMSA pipeline safety regional office where the pipe is in service at least 60 days prior to operating at the alternative MAOP. An operator must also notify a State pipeline safety authority when the pipeline is located in a State where PHMSA has an interstate agent agreement, or an intrastate pipeline is regulated by that State. | | (e) Interference currents | (1) For a new pipeline segment, the construction must address the impacts of induced alternating current from parallel electric transmission lines and other known sources of potential interference with corrosion control. |